CENTER OF ORTHOPAEDICS AND TRAUMATOLOGY UNIVERSITY HOSPITAL BRANDENBURG / HAVEL

Periprosthetic Joint Infection Diagnosis, Biology, Imaging

ROLAND BECKER

INCIDENCE = 0.6% (KNEE 1.1%)

• 65% of PJI within first year

early=31% chronic late = 56% acute hematogenous = 13%

- Most common organism Staph. aureus and epidermidis
- Increase risk of infection in patients with BMI>40kg/m²

Significant increase in mortality rate

Pulido et al. CORR 2008, Zmistowski COOR 2013,

PREDISPOSING FACTORS

Anemia (F<12g/I, M<13g/I)	
Cardiac disease	OR=4.46
Diabetes (HbA1c ≤ 8)	OR=1.61
Hyperglycaemia	
Chronic renal disease	OR=1.91
Malnutrition	
$BMI > 40 kg/m^2$	
ASA score > 2	OR=2.06

Pulido et al. CORR 2008, Zmistowski COOR 2013,

Early infection

- direct contamination
- Mature biofilm after 3 weeks
- Important for management
- DAIR

Exchange of the TKA

Zimmerli NEJM 2004

DEFINITION PJI

- 1. Sinus tract communication with the prosthesis
- 2. Pathogen isolated by culture from 2 tissue of fluid samples
- 3. Four of the following criteria exist:
 - a: Elevation of erythrocyte sedimentation rate (ESR) and CRP
 - b: Elevation of synovial leukocyte count (>2000µL)
 - c: Elevation of neutrophil percentage (>80%)
 - d: Purulence in the affected joint
 - e: Isolation of a microorganism in one culture of periprothetic tissue or fluid
 - d: Greater than five neutrophils per high-power field in five high-power fields observed

from histological analysis of periposthetic tissue x400 magnification

ORGANISM

Bacteria	Frequency
Staphylococcus	50 – 60 %
Gram-negativ, aerobe Stäbchen	20 %
Streptococcus	10 - 15 %
Mixed bacterial infection	10 - 15 %
Anaerobier	7 - 10 %
other	2 %

Ahmad S et al. KSSTA 2016

Comparison of infected versus non infected knees

	Infected knees	Non infected knees
Aspiration days after surgery	20.8 <u>+</u> 7.6	15.9 <u>+</u> 10.5
ESR (mm/hr)	80 <u>+</u> 29	75 <u>+</u> 30
CrP (mg/dL)	171 <u>+</u> 127	88 <u>+</u> 75
Synovial fliud (WBC count (cells/µL)	92600 <u>+</u> 127000	4200 <u>+</u> 5700
Polymorphniclear cells (%PMN)	89.6 <u>+</u> 20.6	76.9 <u>+</u> 21.2

Bedair CORR 2011

Comparison of infected versus non infected knees

	Sensitivity	Specificity
CRP – Threshold <u>></u> 166 mg/dL	16% (9-23%)	94% (90-99%)
Threshold <u>></u> 95 mg/dL	68% (60-70%)	66% (57-74%)
Synovial fluid (WBC) \geq 10700 cells/µL	95% (91-98%)	91% (87-96%)
Synovial fluid (WBC) \geq 27800 cell/µL	84% (78-90%)	99% (98-100%)
Polymorphnuclear cells (%PMN) Threshold <u>></u> 89%	84% (78-90%)	69% (62-77%)

Bedair CORR 2011

Synovial Biomarkers

- C-reactive protein (sCRP)
- Interleukin-6 (sIL-6)
- Leukocyte esterase (sLE)
- Alpha defensin

ELISA alpha defensin test Synovasure TM alpha-defensin test kit

Synovial Biomarkers

S Ahmad KSSTA 2018

BIOPSY

A) Puncture of the joint using a punch \longrightarrow low sensitivity (50-60%)

B) Arthroscopy: 5 samples for microbiology ----- sensitivity > 80%

DIAGNOSTIC TESTS

Blood test	 White blood cell count (WBC) Erythrocyte sedimentation rate (ESR) Interleukin 6 C-reactive proteine
Nuclear diagnosis	 Positron emission tomography (PET-scans) Anti-granulocyte antibodies (AGS) Triple phase bone scan (TPB)
Synovial test	White blood cell count (EBC)White blood cell differentiation
Histopathology	General tissuePolymorphonuclear leukocytes
Bacteriology	
PCR	S Abmad KSSTA 24 (10) 2016

S Ahmad KSSTA 24 (10) 2016

DIAGNOSTIC TESTS

S Ahmad KSSTA 24 (10) 2016

DIAGNOSTIC TESTS

S Ahmad KSSTA 24 (10) 2016

DAIR – Debdridement, antibiotics, implant retention

Timing: < 4 weeks after surgery

- Success rate 65% (range 31-90%)
- Superficial infection more likely to be treated successfully
- High risk of failure in hematogenous infections when WCC >10x10⁹/L
- Treatment as early as possible
- Failure rate higher (up to 34%) when patients were treated initially with DAIR

DAIR – Debdridement, antibiotics, implant retention

Surgical technique

- 1. Patients consent for exchange of the TKA
- 2. No torniquet
- 3. Use the same skin incision and approach
- 4. Removal of all suture material
- 5. Take **5 biopsies**
- 6. Complete synovectomy, but preserve the joint capsule
- 7. Use pulse lavage
- 8. Change gloves and instruments
- 9. Use intraarticular drainage routinely

Two stage

EXCHANGE OF IMPLANTS

Single stage

One-stage Two-stage **Risk Difference Risk Difference** Study or Subgroup Events Total Events Total Weight M-H, Random, 95% Cl Year M-H, Random, 95% CI 1.1.1 Prior to year 2000 Borden 1987 0 3 1 113.5% -0.09 [-0.47, 0.28] 1987 Scott 1993 2 10 0 7 5.4% 0.20 [-0.10, 0.50] 1993 8.9% Subtotal (95% CI) 13 18 0.08 [-0.20, 0.36] 2 Total events 1 Heterogeneity: $Tau^2 = 0.01$; $Chi^2 = 1.42$, df = 1 (P = 0.23); $I^2 = 30\%$ Test for overall effect: Z = 0.54 (P = 0.59) 1.1.2 Year 2000 and after Laffer 2006 0 2 2 2.2% -0.15 [-0.62, 0.31] 2006 13 Mortazavi 2010 0 3 17 80 4.3% -0.21 [-0.55, 0.12] 2010 Haddad 2014 0 28 5 74 84.6% -0.07 [-0.14, 0.01] 2014 Subtotal (95% CI) 33 167 91.1% -0.08 [-0.15, -0.00] Total events 0 24 Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 0.93$, df = 2 (P = 0.63); $I^2 = 0\%$ Test for overall effect: Z = 2.06 (P = 0.04)Total (95% CI) 46 185 100.0% -0.06 [-0.13, 0.01] 25 Total events 2 Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 3.98$, df = 4 (P = 0.41); $I^2 = 0\%$ -1 1 -0.5 0.5 Ò Test for overall effect: Z = 1.75 (P = 0.08) Favours one-stage Favours two-stage Test for subgroup differences: $Chi^2 = 1.07$, df = 1 (P = 0.30), $I^2 = 6.4\%$

Nagra NS, KSSTA 2015

More than 1 criterium = PJI

- 1. Sinus tract or purulence around the implant
- 2. Synovial leukocyte count: > $2000/\mu$ l Leukocytes or
 - > 70% granulocytes (PMN)
- 3. Periprostheticc tissue shows inflammation
- 4. Microbiology:

Microb. Growth in synovial fluid

<u>></u> 2 tissue samples Sonication fluid (>CFU/ml)

SUMMARY

	Acute PJI (< 3-4 weeks)	Chronic PJI
Clinical signs	Acute pain Fever Redness, swelling Proolonges wound oosing	Chronic pain Sinus tract Ioosening
Microorganism	High-virulent: Staphylococcus aureus Gram-negative bacteria (E.coli, Klebsiella, Enterobacter, Pseudimonas aeruginosa	Low-virulent: Coagulase-negative staph. (Staph. Epidermidis, Cutibacterium (Propionibacterium))
Surgery	Debridement, exchange of mobile parts	Exchange of the protheses

A Trampuz, Pro-Implant Foundation

Pocket Guide to Diagnosis & Treatment of Periprosthetic Joint Infection (PJI)

Version 9: October 2019

Contact our Consultation Portal for individual recommendations or Register for PRO-IMPLANT Workshops: www.pro-implant.org

SURGICAL MANAGEMENT (A. Trampuz 2017)

Management Surgery Debridement and exchange of the liner Prosthesis stayes in place Oral 10 weeks i.v. 2 weeks Exchange of the prosthesis One stage revision Oral 10 weeks i.v. 2 weeks Two stage revision (short) Explantation Implantation i.v. 2 weeks i.v. 1 week Oral 9 weeks Two stage revision (long) Explantation Implantation i.v. 2 weeks Oral 5 weeks Oral 4 weeks i.v. 1 week Three stage revision Explantation Exchange of Spacer Implantation i.v. 3 weeks i.v. 3 weeks i.v. 1 week Oral 5 weeks

Micro-organism	Antibiotics	Dosage	Route
Staphylococcus spp.	Initial therapy (2 wk)		
Methicillin-sensible	Rifampin plus	450 mg (2x/d) [†]	PO
	Flucloxacillin [‡]	2 g (4x/d)	IV
Methicillin-resistant	Rifampin plus	450 mg (2x/d) [†]	PO
	Vancomycin or	15 mg/kg (2x/d) [§]	IV
	Daptomycin	8-10 mg/kg (1x/d)	IV
Staphylococcus spp.	Followed by		
	Rifampin plus	450 mg (2x/d) [†]	PO
	Levofloxacin or	750 mg (1x/d) or	PO
		500 mg (2x/d)	
	Ciprofloxacin or	750 mg (2x/d)	PO
	Teicoplanin or	400 mg (1x/d) [¶]	IV
	Fusidic acid or	500 mg (3x/d)	PO
	Trimethoprim or sulfamethoxazol or	1 Tablet forte (3x/d)	PO
	Minocyclin or	100 mg (2x/d)	PO
	Linezolid or	600 mg (2x/d)	PO
	Clindamycin [#]	1200-1350 mg/d in 3-4 doses	PO
Streptococcus spp."	4 wk		
	Penicillin G [‡] or	20-24 Mio U/d (4-6 doses)	IV
	Ceftriaxone	2 g (1x/d)	IV
	Followed by		
	Amoxicillin or	1000 mg (3x/d)	PO
	Clindamycin [#]	1200-1350 mg/d in 3-4 doses	PO
Enterococcus spp.**			
Penicillin-sensible	Penicillin G ^{‡‡} or	20-24 Mio E/d in 4-6 doses	IV
	Ampicillin or Amoxicillin ^{**}	2 g (4-6x/d)	IV
Penicillin-resistant	Vancomycin or	15 mg/kg/d [§]	IV
	Daptomycin or	8-10 mg/kg/d	IV
	Linezolid	600 mg (2x/d)	IV or PO
Enterobacteriaceae	Beta-lactam for 2 wk ^{§§}		IV
	followed by Ciprofloxacin	750 mg (2x/d)	PO
Enterobacter spp.	Cefepim or	2 g (3x/d)	IV
(eg, Pseudomonas aeruginosa)	Ceftazidim or	2 g (3x/d)	IV
	Meropenem	1 g (3x/d)##	IV
	for 2-4 wk, followed by Ciprofloxacin	750 mg (2x/d)	PO
Propionibacterium spp.	Penicillin G or #	20-24 Mio E/d in 4-6 doses	IV
	Clindamycin for 2-4 wk, followed by	1800-2400 mg/d in 3-4 doses	IV
	Amoxicillin or	750 or 1000 mg	PO
	Clindamycin [#]	1200 or 1350 mg/d in 3-4 doses	PO
Gram-negative anaerobes (eg, Bacteroides spp.)	Metronidazole	500 mg (3x/d)	IV or PO
Mixed infections without MRSA	Ampicillin or Sulbactam or	3 g (4x/d)	IV
	Amoxicilin or Clavulanic acid or	2.2 g (3x/d)	IV
	Piperacillin or Tazobactam or	4.5 g (3x/d)	IV
	Imipenem or	500 mg (4x/d)	IV
	Meropenem	1 g (3x/d) ^{##}	IV

Becker et al Operative Techniques in Orthop. 2016

Thank You

Hirschmann

The Unhappy Total

Knee Replacement

A Comprehensive Review

and Management Guide

Becker

Editors

Michael T. Hirschmann Roland Becker Editors

The Unhappy Total Knee Replacement

> A Comprehensive Review and Management Guide

Owing to improved understanding of biomechanics and tribology and advances in implant design and treatment technique, total knee arthroplasty (TKA) is considered a very successful treatment for osteoarthritic knees. Nevertheless, a significant minority of patients are unhappy with the outcome, complaining of pain, instability, swelling, or reduced range of motion. This book addresses the need for improved diagnostic and treatment guidelines for this challenging group of patients.

The book opens by discussing the basics of TKA and the various causes of failure and pain. Diagnostic aspects are considered in detail, with attention to advances in clinical investigation, laboratory analysis, and, in particular, imaging techniques. Furthermore, state of the art diagnostic algorithms are presented that will assist in identifying the source of the problem in individual cases. Specific pathology-related treatment options, including conservative approaches and salvage and revision TKA strategies, are then explained, with identification of the pitfalls and key points of each treatment. Future perspectives are briefly considered, and a series of cases are presented that cover clinical scenarios frequently encountered in daily clinical practice.

The evidence-based, clinically focused guidance provided in this book, written by internationally renowned experts, will assist surgeons in ensuring that patients with an unsatisfactory result of TKA receive the most effective management. The book will also be helpful for general practitioners, physiotherapists, industry technicians, and engineers.

Orthopedics, Surgical Orthopedics & Sports Medicine Hirschmann · Becker Eds

The Unhappy Total Knee Rep

esska-congress2022.org

Science Opens the Mind

20번 ESSKA CONGRESS 27-29 APRIL 2022 PARIS, FRANCE